EXPRESS to UML for XMI

Melbourne SC4 Meeting February 2000 David Price dmprice@us.ibm.com +1 843 760 4341

ISO TC184/SC4

Agenda

- What is OMG XMI?
- EXPRESS to UML Mappings
- EXPRESS to UML Examples

What is OMG XMI?

ISO TC184/SC4

Existing OMG Standards

- UML Unified Modeling Language
 - A graphical language for modeling systems
- MOF Meta-object Facility
 - Meta-model of modeling languages
- XMI XML Meta-data Interchange
 - Meta-model-based approach to the interchange of Meta-data (I.e. schemas!)
 - Can also exchange data (like Part 21) based on those schemas
- XMI-compliant DTD for UML
 - A lexical interchange format for UML models
 - OMG can now standardize the "UML model", without standardizing the "UML diagram"
 - UML is no longer only graphical!

Excerpts from IBM Presentations

ISO XMI XML Metadata Interchange

What is XMI?

eXtensible XML Metadata Interchange

Rules and architecture for creating transfer formats

XMI 1.0 approved as OMG standard

XMI 1.1 revision under ballot now

Input: information model

Output: transfer format (DTD)

ISO TC184/SC4

XMI Supporters

Co-Submitters (9)

■ IBM, Unisys, DSTC, Oracle, Platinum, Fujitsu, Softeam, Reccerca, Daimler-Benz

Supporters (20)

■ Cayenne, Genesis, Inline, Rational, Select, Sprint, Sybase, Xerox, MCI Systemhouse, Boeing, Ardent, Aviatis, ICONIX, Integrated Systems, Verilog, Telefonica, Universitat Politecnica de Catalunya, NCR, Nihon Unisys, NTT

ISO Tags from metamodel, content from model <name>Business</name> <visibility xmi.value="public"/> <Class> Meta <name>Customer</name> model <feature> <Attribute> <name>id</name> <multiplicity> <XMI.field>1</XMI. field> <XMI.field>1</XMI. field> </multiplicity> </Attribute> Model</feature> </Class> </Model>

ISO

XMI: Object Interchange

Stolen by David Price from September '99 Steve Brodsky

sbrodsky@us.ibm.com

XMI Standard

- XML Open Metadata Interchange
 - ▶IBM co-authored OMG specification with Unisys
 - ► Establish an industry standard specification for a stream-based model interchange format
 - Provide a generic format that can be used to transfer a wide variety of models
 - Allow exchange of OMG Object Analysis and Design Facility (OADTF) compliant models
 - -CWM, UML, MOF, more coming...
- Support of 30+ vendors
- March 26, 1999 OMG adopted technology
- XMI Revision Task Force chair Oct '99
- UML/MOF/XMI package to be sent to ISO

EXPRESS to UML Mappings

An Initial Proposal for Part 28

ISO TC184/SC4

The role of schemas

- Main points for Part 28 project
 - EXPRESS schema and map to XML are only a <u>part</u> of software development
 - In many scenarios, file exchange based on the EXPRESS schema never occurs
 - OMG represents a large and important community we need access to
- Use UML as a software implementation technology, not a general purpose modeling language (I.e. a 20s, not 10s series part!)
 - You could consider UML simply one small level of abstraction above Java or C++ classes

The Approach for Mapping EXPRESS to UML for XMI in Part 28

- Map to mainstream UML constructs, not EXPRESS specific extensions
- Map EXPRESS into the meta-model of UML
 - Benefit is that as XMI adds capability we do not need to change Part 28 to take advantage of it
 - For example, XMI 1.1 uses XML Namespaces and in the future XMI will produce XML Schemas as well as a DTD
- Start with simple one-way mapping, perhaps grow scope with experience
- Isolate this use of UML enable XMI use from any other UML considerations in SC4

Unmapped EXPRESS Constructs

- FUNCTION, PROCEDURE and CONSTANT declarations not used in global or domain rules
 - When used by a rule, these appear in a string along with the rest of the body of the rule
- Derived attributes
- Remarks

Schemas and the Interface Specification

- One schema must be chosen as the "context" for the mapping
- Any EXPRESS Schema visible to "context schema" via interface specification becomes a UML Model
- EXPRESS elements explicitly or implicitly interfaced into context schema get mapped and are defined (via UML Element Ownership) in the UML Model representing the schema within which they were defined
- Each Use/Reference becomes a UML Element Import

ISO TC184/SC4

Aggregates

- A one-dimensional EXPRESS aggregate becomes a UML Class (e.g. "set_of_string")
- Multi-dimensional EXPRESS aggregates become a series of related UML Classes (e.g. "set_of_string" and "set_of_set_of_string")
 - A UML Association links the underlying type of each aggregate with the aggregate

Entity and subtype

- Each EXPRESS Entity becomes a UML Class
 - If ABSTRACT SUPERTYPE, then UML Class "isAbstract"
- Each EXPRESS subtype declaration becomes a UML Generalization
- More complex supertype constraints are not mapped

ISO TC184/SC4

Defined Types

- EXPRESS Selects become UML Classes
 - A UML Association links the UML Class with the other UML Classes that represent the select list
- EXPRESS Enumerations become UML Enumerations
- Other defined types become UML Classes
 - A UML Association links the UML Class with whatever represents the underlying type in the UML mapping

Explicit Attributes

- Simple or Enumeration data type-valued EXPRESS Explicit Attributes become UML Attributes
- All other Explicit Attributes become UML Associations
 - Name of Inverse Attribute is applied to Association End if declared in EXPRESS, otherwise "reverse_of_<attribute>" is created

ISO TC184/SC4

Constraints

- Global rules, domain rules in ENTITY and TYPE and unique rules all map to UML Constraint that refer to whatever they constrain
- UML BooleanExpression contains the body of the rule in the EXPRESS language
 - This has two attributes: "language" and a string
- Functions, Procedures and Constants used in the rules are added to the end of the string representing the body of the Constraint

EXPRESS to UML Examples

```
ISO
                          Example 4
                              <UML:Model id='idsmith3' name</pre>
                                 ='mr_smiths_garden3'>
 SCHEMA mr_smiths_garden3;
                              <UML:Class id=idplant3'</pre>
 ENTITY plant3;
                                name='plant3'/>
 END_ENTITY;
                              <UML:ElementOwnership</pre>
                                 namespace='idsmith3'
 END_SCHEMA;
                                 ownedElement='idplant3'/>
                              </UML:Model>
 SCHEMA mr_jones_garden4;
 USE FROM
                              <UML:Model id='idjones4' name =</pre>
 mr_smiths_garden3(plant3)
                                 'mr_jones_garden4'>
                              <UML:ElementImport</pre>
 AS mr_smiths_plant4;
                                 modelElement='idplant3'
 END_SCHEMA;
                                 package='idjones4'
                                 visibility=public
                                 alias='mr_smiths_plant4'/>
                              </UML:Model>
```

```
ISO
                             Example 5
                             <UML:Model id='idsmith5' name</pre>
                              ='mr smiths garden5'>
SCHEMA mr_smiths_garden5;
                             <UML:Class id=idgarden5' name='garden5'>
ENTITY garden5;
                             <UML:Association name='has_bed'>
                             <UML:AssociationEnd name='has_bed'</pre>
has_bed : bed5;
                             type='idbed5' multiplicity='1..1'/>
END_ENTITY;
                             <UML:AssociationEnd name='the_garden'</pre>
                             type='idgarden5' multiplicity='1..1'/>
ENTITY bed5;
                              </UML:Assocation>
description : STRING;
                              </UML:Class>
INVERSE
                             <UML:ElementOwnership namespace='idsmith5'</pre>
                             ownedElement='idgarden5'/>
the_garden : garden5 FOR
                             <UML:Class id=idbed5' name='bed5'>
   has_bed;
                             <UML:Attribute name='description'</pre>
END_ENTITY;
                             type='idstring'/>
END_SCHEMA;
                              <UML:Datatype id='idstring' name='string'/>
                              </UML:Class>
                              <UML:ElementOwnership namespace='idsmith5'</pre>
                             ownedElement='idbed5'/>
                              </UML:Model>
```

```
ISO
                              Example 8
                             <UML:Model id='idjones8'</pre>
                                name='mr_jones_garden8'>
                             <UML:Class id='idgarden8' name='garden8'/>
SCHEMA
                             <UML:ElementOwnership namespace='idjones8'</pre>
mr_jones_garden8;
                                ownedElement='idgarden8'/>
ENTITY garden8;
                             <UML:Constraint id='idoog8'</pre>
END_ENTITY;
                                name='only_one_garden' body='idboolexp8'/>
RULE only_one_garden FOR
                             <UML:ElementOwnership namespace='idjones8'</pre>
   (garden8);
                                ownedElement='idoog8'/>
WHERE
                             <UML:Association name='constrainedElement'>
mr_jones_has_one_garden
                             <UML:AssociationEnd name='constrainedElement'
type='idgarden8' multiplicity='1..1'/>
: SIZEOF (garden8) = 1;
END_RULE;
                             <UML:AssociationEnd name='constraint'</pre>
                                type='idoog8' multiplicity='1..1'/>
END_SCHEMA;
                             </UML:Assocation>
                             <UML:BooleanExpression id='idboolexp8'</pre>
                                language='EXPRESS' body=
                             'WHERE
                             mr_jones_has_one_garden : SIZEOF (garden8) =
                             </UML:Model>
```